Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids.
نویسندگان
چکیده
The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N(1)- and N(3)-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His(6) fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His(6) plus His(6)-NdmD catalyzed N(1)-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His(6) plus His(6)-NdmD catalyzed N(3)-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N(7)-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste.
منابع مشابه
Novel , highly specific N - demethylases enable bacteria to live on caffeine and 1 related purine alkaloids
8 9 10 Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans 11 Center, Iowa City, IA 52242, U.S.A. 12 13 The Center for Biocatalysis and Bioprocessing, University of Iowa, 2501 Crosspark Rd., Suite 14 C-100, Coralville, IA 52241, U.S.A. 15 16 Protein Crystallography Facility, University of Iowa, 4-680 Bowen Science Building, Iowa 17 City, IA 52242, U.S.A. 18 19 T...
متن کاملDraft Genome Sequence of the Bacterium Pseudomonas putida CBB5, Which Can Utilize Caffeine as a Sole Carbon and Nitrogen Source
Pseudomonas putida CBB5 was isolated from soil by enriching for growth on caffeine (1,3,7-trimethylxanthine). The draft genome of this strain is 6.9 Mb, with 5,941 predicted coding sequences. It includes the previously studied Alx gene cluster encoding alkylxanthine N-demethylase enzymes and other genes that enable the degradation of purine alkaloids.
متن کاملCaffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering.
Details of the recently elucidated biosynthetic pathways of caffeine and related purine alkaloids are reviewed. The main caffeine biosynthetic pathway is a sequence consisting of xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine. Genes encoding N-methyltransferases involved in three of these four reactions have been isolated and the molecular structure of N-methyltrans...
متن کامل[Frontiers in Bioscience 9, 1864-1876, May 1, 2004] 1864 DISTRIBUTION AND BIOSYNTHESIS OF CAFFEINE IN PLANTS
1. Abstract 2. Introduction 3. Structure and properties of purine alkaloids found in nature 4. Distribution of purine alkaloids 4.1. Coffee and related Coffea plants 4.2. Tea and related Camellia plants 4.3. Cacao and related Theobroma and Herrania plants 4.4. Other plants 5. The “core pathway” of caffeine biosynthesis: conversion of xanthosine to caffeine 5.1. Production of 7-methylxanthosine ...
متن کاملCharacterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source.
N-Demethylation of many xenobiotics and naturally occurring purine alkaloids such as caffeine and theobromine is primarily catalysed in higher organisms, ranging from fungi to mammals, by the well-studied membrane-associated cytochrome P450s. In contrast, there is no well-characterized enzyme for N-demethylation of purine alkaloids from bacteria, despite several reports on their utilization as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 194 8 شماره
صفحات -
تاریخ انتشار 2012